You are here

Spatiotemporal dynamics of early cortical gesture processing

Spatiotemporal dynamics of early cortical gesture processing

Authors: 
N. Möhring, C. Shen & A.H. Neuhaus
Year: 
2014
Journal: 
NeuroImage
Abstract: 

Gesture processing has been consistently shown to be associated with activation of the inferior parietal lobe (IPL); however, little is known about the integration of IPL activation into the temporal dynamics of early sensory areas. Using a temporally graded repetition suppression paradigm, we examined the activation and time course of brain areas involved in hand gesture processing. We recorded event-related potentials in response to stimulus pairs of static hand images forming gestures of the popular rock–paper–scissors game and estimated their neuronal generators. We identified two main components associated with adaptive patterns related to stimulus repetition. The N190 component elicited at temporo-parietal sites adapted to repetitions of the same gesture and was associated with right-hemispheric extrastriate body area activation. A later component at parieto-occipital sites demonstrated temporally graded adaptation effects for all gestures with a left-hemispheric dominance. Source localization revealed concurrent activations of the right extrastriate body area, fusiform gyri bilaterally, and the left IPL at about 250 ms. The adaptation pattern derived from the graded repetition suppression paradigm demonstrates the functional sensitivity of these sources to gesture processing. Given the literature on IPL contribution to imitation, action recognition, and action execution, IPL activation at about 250 ms may represent the access into specific cognitive routes for gesture processing and may thus be involved in integrating sensory information from cortical body areas into subsequent visuo-motor transformation processes.

© Copyright 1999 - 2024 ANT Neuro | www.ant-neuro.com | Terms of Use | Privacy Statement | Contact | USA Customers