You are here

Improved tracking of sevoflurane anesthetic states with drug-specific machine learning models

Improved tracking of sevoflurane anesthetic states with drug-specific machine learning models

Authors: 
Kimia Kashkooli, Sam L Polk, Eunice Y Hahm, James Murphy, Breanna R Ethridge, Jacob Gitlin, Reine Ibala, Jennifer Mekonnen, Juan C Pedemonte, Haoqi Sun, M Brandon Westover, Riccardo Barbieri, Oluwaseun Akeju, Shubham Chamadia
Year: 
2020
Journal: 
Journal of Neural Engineering
Abstract: 

Objective. The ability to monitor anesthetic states using automated approaches is expected to reduce inaccurate drug dosing and side-effects. Commercially available anesthetic state monitors perform poorly when ketamine is administered as an anesthetic-analgesic adjunct. Poor performance is likely because the models underlying these monitors are not optimized for the electroencephalogram (EEG) oscillations that are unique to the co-administration of ketamine. Approach. In this work, we designed two k-nearest neighbors algorithms for anesthetic state prediction. Main results. The first algorithm was trained only on sevoflurane EEG data, making it sevoflurane-specific. This algorithm enabled discrimination of the sevoflurane general anesthesia (GA) state from sedated and awake states (true positive rate = 0.87, [95% CI, 0.76, 0.97]). However, it did not enable discrimination of the sevoflurane-plus-ketamine GA state from sedated and awake states (true positive rate = 0.43, [0.19, 0.67]). In our second algorithm, we implemented a cross drug training paradigm by including both sevoflurane and sevoflurane-plus-ketamine EEG data in our training set. This algorithm enabled discrimination of the sevoflurane-plus-ketamine GA state from sedated and awake states (true positive rate = 0.91, [0.84, 0.98]). Significance. Instead of a one-algorithm-fits-all-drugs approach to anesthetic state monitoring, our results suggest that drug-specific models are necessary to improve the performance of automated anesthetic state monitors.

Read more >>>

© Copyright 1999 - 2020 ANT Neuro | www.ant-neuro.com | Terms of Use | Privacy Statement | Contact | USA Customers